Benefiting from the intrinsic supervision information exploitation capability, contrastive learning has achieved promising performance in the field of deep graph clustering recently. However, we observe that two drawbacks of the positive and negative sample construction mechanisms limit the performance of existing algorithms from further improvement. 1) The quality of positive samples heavily depends on the carefully designed data augmentations, while inappropriate data augmentations would easily lead to the semantic drift and indiscriminative positive samples. 2) The constructed negative samples are not reliable for ignoring important clustering information. To solve these problems, we propose a Cluster-guided Contrastive deep Graph Clustering network (CCGC) by mining the intrinsic supervision information in the high-confidence clustering results. Specifically, instead of conducting complex node or edge perturbation, we construct two views of the graph by designing special Siamese encoders whose weights are not shared between the sibling sub-networks. Then, guided by the high-confidence clustering information, we carefully select and construct the positive samples from the same high-confidence cluster in two views. Moreover, to construct semantic meaningful negative sample pairs, we regard the centers of different high-confidence clusters as negative samples, thus improving the discriminative capability and reliability of the constructed sample pairs. Lastly, we design an objective function to pull close the samples from the same cluster while pushing away those from other clusters by maximizing and minimizing the cross-view cosine similarity between positive and negative samples. Extensive experimental results on six datasets demonstrate the effectiveness of CCGC compared with the existing state-of-the-art algorithms.
translated by 谷歌翻译
Contrastive deep graph clustering, which aims to divide nodes into disjoint groups via contrastive mechanisms, is a challenging research spot. Among the recent works, hard sample mining-based algorithms have achieved great attention for their promising performance. However, we find that the existing hard sample mining methods have two problems as follows. 1) In the hardness measurement, the important structural information is overlooked for similarity calculation, degrading the representativeness of the selected hard negative samples. 2) Previous works merely focus on the hard negative sample pairs while neglecting the hard positive sample pairs. Nevertheless, samples within the same cluster but with low similarity should also be carefully learned. To solve the problems, we propose a novel contrastive deep graph clustering method dubbed Hard Sample Aware Network (HSAN) by introducing a comprehensive similarity measure criterion and a general dynamic sample weighing strategy. Concretely, in our algorithm, the similarities between samples are calculated by considering both the attribute embeddings and the structure embeddings, better revealing sample relationships and assisting hardness measurement. Moreover, under the guidance of the carefully collected high-confidence clustering information, our proposed weight modulating function will first recognize the positive and negative samples and then dynamically up-weight the hard sample pairs while down-weighting the easy ones. In this way, our method can mine not only the hard negative samples but also the hard positive sample, thus improving the discriminative capability of the samples further. Extensive experiments and analyses demonstrate the superiority and effectiveness of our proposed method.
translated by 谷歌翻译
Knowledge graph reasoning (KGR), aiming to deduce new facts from existing facts based on mined logic rules underlying knowledge graphs (KGs), has become a fast-growing research direction. It has been proven to significantly benefit the usage of KGs in many AI applications, such as question answering and recommendation systems, etc. According to the graph types, the existing KGR models can be roughly divided into three categories, \textit{i.e.,} static models, temporal models, and multi-modal models. The early works in this domain mainly focus on static KGR and tend to directly apply general knowledge graph embedding models to the reasoning task. However, these models are not suitable for more complex but practical tasks, such as inductive static KGR, temporal KGR, and multi-modal KGR. To this end, multiple works have been developed recently, but no survey papers and open-source repositories comprehensively summarize and discuss models in this important direction. To fill the gap, we conduct a survey for knowledge graph reasoning tracing from static to temporal and then to multi-modal KGs. Concretely, the preliminaries, summaries of KGR models, and typical datasets are introduced and discussed consequently. Moreover, we discuss the challenges and potential opportunities. The corresponding open-source repository is shared on GitHub: https://github.com/LIANGKE23/Awesome-Knowledge-Graph-Reasoning.
translated by 谷歌翻译
Knowledge graph embedding (KGE) aims to learn powerful representations to benefit various artificial intelligence applications, such as question answering and recommendations. Meanwhile, contrastive learning (CL), as an effective mechanism to enhance the discriminative capacity of the learned representations, has been leveraged in different fields, especially graph-based models. However, since the structures of knowledge graphs (KGs) are usually more complicated compared to homogeneous graphs, it is hard to construct appropriate contrastive sample pairs. In this paper, we find that the entities within a symmetrical structure are usually more similar and correlated. This key property can be utilized to construct contrastive positive pairs for contrastive learning. Following the ideas above, we propose a relational symmetrical structure based knowledge graph contrastive learning framework, termed KGE-SymCL, which leverages the symmetrical structure information in KGs to enhance the discriminative ability of KGE models. Concretely, a plug-and-play approach is designed by taking the entities in the relational symmetrical positions as the positive samples. Besides, a self-supervised alignment loss is used to pull together the constructed positive sample pairs for contrastive learning. Extensive experimental results on benchmark datasets have verified the good generalization and superiority of the proposed framework.
translated by 谷歌翻译
深图形聚类,旨在揭示底层的图形结构并将节点划分为不同的群体,近年来引起了密集的关注。然而,我们观察到,在节点编码的过程中,现有方法遭受表示崩溃,这倾向于将所有数据映射到相同的表示中。因此,节点表示的鉴别能力是有限的,导致不满足的聚类性能。为了解决这个问题,我们提出了一种新颖的自我监督的深图聚类方法,通过以双向还原信息相关性来称呼双重关联减少网络(DCRN)。具体而言,在我们的方法中,我们首先将暹罗网络设计为编码样本。然后通过强制跨视图样本相关矩阵和跨视图特征相关矩阵分别近似两个标识矩阵,我们减少了双级的信息相关性,从而提高了所得特征的判别能力。此外,为了减轻通过在GCN中过度平滑引起的表示崩溃,我们引入了传播正规化术语,使网络能够利用浅网络结构获得远程信息。六个基准数据集的广泛实验结果证明了提出的DCRN对现有最先进方法的有效性。
translated by 谷歌翻译
图形表示学习(GRL)属性缺失的图表,这是一个常见的难以具有挑战性的问题,最近引起了相当大的关注。我们观察到现有文献:1)隔离属性和结构嵌入的学习因此未能采取两种类型的信息的充分优势; 2)对潜伏空间变量的分布假设施加过于严格的分布假设,从而导致差异较少的特征表示。在本文中,基于在两个信息源之间引入亲密信息交互的想法,我们提出了我们的暹罗属性丢失的图形自动编码器(SAGA)。具体而言,已经进行了三种策略。首先,我们通过引入暹罗网络结构来共享两个进程学习的参数来纠缠嵌入属性嵌入和结构嵌入,这允许网络培训从更丰富和不同的信息中受益。其次,我们介绍了一个K到最近的邻居(knn)和结构约束,增强了学习机制,通过过滤不可靠的连接来提高缺失属性的潜在特征的质量。第三,我们手动掩盖多个相邻矩阵上的连接,并强力嵌入子网恢复真正的相邻矩阵,从而强制实现所得到的网络能够选择性地利用更高级别的判别特征来进行数据完成。六个基准数据集上的广泛实验表明了我们传奇的优越性,反对最先进的方法。
translated by 谷歌翻译
Recent studies have shown that using an external Language Model (LM) benefits the end-to-end Automatic Speech Recognition (ASR). However, predicting tokens that appear less frequently in the training set is still quite challenging. The long-tail prediction problems have been widely studied in many applications, but only been addressed by a few studies for ASR and LMs. In this paper, we propose a new memory augmented lookup dictionary based Transformer architecture for LM. The newly introduced lookup dictionary incorporates rich contextual information in training set, which is vital to correctly predict long-tail tokens. With intensive experiments on Chinese and English data sets, our proposed method is proved to outperform the baseline Transformer LM by a great margin on both word/character error rate and tail tokens error rate. This is achieved without impact on the decoding efficiency. Overall, we demonstrate the effectiveness of our proposed method in boosting the ASR decoding performance, especially for long-tail tokens.
translated by 谷歌翻译
Large language models (LLMs) have demonstrated impressive capabilities in natural language understanding and generation, but the quality bar for medical and clinical applications is high. Today, attempts to assess models' clinical knowledge typically rely on automated evaluations on limited benchmarks. There is no standard to evaluate model predictions and reasoning across a breadth of tasks. To address this, we present MultiMedQA, a benchmark combining six existing open question answering datasets spanning professional medical exams, research, and consumer queries; and HealthSearchQA, a new free-response dataset of medical questions searched online. We propose a framework for human evaluation of model answers along multiple axes including factuality, precision, possible harm, and bias. In addition, we evaluate PaLM (a 540-billion parameter LLM) and its instruction-tuned variant, Flan-PaLM, on MultiMedQA. Using a combination of prompting strategies, Flan-PaLM achieves state-of-the-art accuracy on every MultiMedQA multiple-choice dataset (MedQA, MedMCQA, PubMedQA, MMLU clinical topics), including 67.6% accuracy on MedQA (US Medical License Exam questions), surpassing prior state-of-the-art by over 17%. However, human evaluation reveals key gaps in Flan-PaLM responses. To resolve this we introduce instruction prompt tuning, a parameter-efficient approach for aligning LLMs to new domains using a few exemplars. The resulting model, Med-PaLM, performs encouragingly, but remains inferior to clinicians. We show that comprehension, recall of knowledge, and medical reasoning improve with model scale and instruction prompt tuning, suggesting the potential utility of LLMs in medicine. Our human evaluations reveal important limitations of today's models, reinforcing the importance of both evaluation frameworks and method development in creating safe, helpful LLM models for clinical applications.
translated by 谷歌翻译
To improve uncertainty quantification of variance networks, we propose a novel tree-structured local neural network model that partitions the feature space into multiple regions based on uncertainty heterogeneity. A tree is built upon giving the training data, whose leaf nodes represent different regions where region-specific neural networks are trained to predict both the mean and the variance for quantifying uncertainty. The proposed Uncertainty-Splitting Neural Regression Tree (USNRT) employs novel splitting criteria. At each node, a neural network is trained on the full data first, and a statistical test for the residuals is conducted to find the best split, corresponding to the two sub-regions with the most significant uncertainty heterogeneity. USNRT is computationally friendly because very few leaf nodes are sufficient and pruning is unnecessary. On extensive UCI datasets, in terms of both calibration and sharpness, USNRT shows superior performance compared to some recent popular methods for variance prediction, including vanilla variance network, deep ensemble, dropout-based methods, tree-based models, etc. Through comprehensive visualization and analysis, we uncover how USNRT works and show its merits.
translated by 谷歌翻译
Conversational recommender systems (CRSs) often utilize external knowledge graphs (KGs) to introduce rich semantic information and recommend relevant items through natural language dialogues. However, original KGs employed in existing CRSs are often incomplete and sparse, which limits the reasoning capability in recommendation. Moreover, only few of existing studies exploit the dialogue context to dynamically refine knowledge from KGs for better recommendation. To address the above issues, we propose the Variational Reasoning over Incomplete KGs Conversational Recommender (VRICR). Our key idea is to incorporate the large dialogue corpus naturally accompanied with CRSs to enhance the incomplete KGs; and perform dynamic knowledge reasoning conditioned on the dialogue context. Specifically, we denote the dialogue-specific subgraphs of KGs as latent variables with categorical priors for adaptive knowledge graphs refactor. We propose a variational Bayesian method to approximate posterior distributions over dialogue-specific subgraphs, which not only leverages the dialogue corpus for restructuring missing entity relations but also dynamically selects knowledge based on the dialogue context. Finally, we infuse the dialogue-specific subgraphs to decode the recommendation and responses. We conduct experiments on two benchmark CRSs datasets. Experimental results confirm the effectiveness of our proposed method.
translated by 谷歌翻译